BLACKSTONE VALLEY AMATEUR RADIO CLUB

WELCOME TO THE CONSORTIUM

FEATURED IN THE APRIL 2018 ISSUE OF **IST** MAGAZINE

W1YRC Bob Beaudet K1GND Jim Johnson

VISIT OUR WEB SITE AT WWW.W1DDD.ORG FOR DETAILS OF UP COMING EVENTS AND CLUB ACTIVITIES

SMALL HF ANTENNAS

THE SMALL SPACE AND BIG ANTENNA DILEMMA **CONSTRAINTS COVENANTS RESTRICTED LOT SIZE** CITY BYLAWS **BOARDS OF VARIANCE STRATA RULES** NEIGHBOR COMPLAINTS OF UNSIGHTLY STRUCTURES WHAT ELSE AS IF THAT'S NOT ENOUGH ?

THE CHALLENGE

- How to make HF antennas perform in small spaces
- Small antennas

Small means shorter antennas that fit available space

How to make a STEALTH antenna

Antennas that are visible but don't look like antennas

• How to Hide antennas

Out of sight but somewhere in/on the housing structure

OPERATING ISSUES

• Performance issues using short antennas

Lower gain – less "wire in the sky"

Narrower bandwidths – tuning required

• Interference more likely

Proximity to audio, video, AM, FM, PC, Tel, etc. equipment QRP to 100 watts probably max

• Safety issue

You and the antenna may share the same space RF biological exposure limits to be checked

Structural integrity of mounted antennas – make secure

BUILDING RF TRANSPARENCY

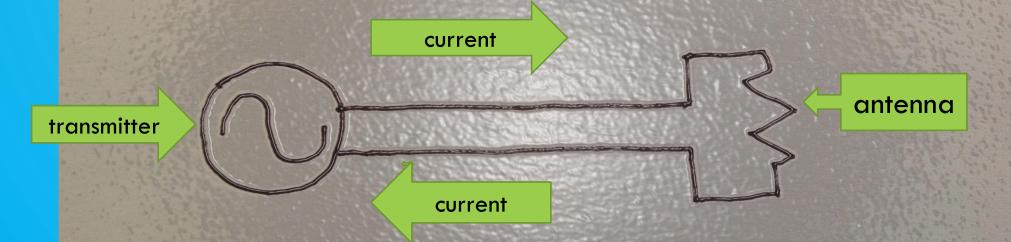
- Wooden frame structures
 - RF transparency good
 - Internal conductors "antennas"
 - Power, telephone, cable, alarm, etc. wiring
 - Copper plumbing
- Concrete structures
 - RF shielded at HF
 - Rebar and metal framed windows small aperture Metal 2 X 4 framing inside building
 - Internal conductors

WHICH FLOOR? APT. / CONDO

- Top floor
 - access to roof top antennas
 - short feeder runs
 - best separation from tenants, none above
- Bottom
 - access to ground mounted antennas grounding systems possible feeder runs OK
 - tenant spacing, top & 2 sides
- Mid floors
 - interior or balcony mounted antennas
 - tenants all around

SOME ANTENNA THEORY

 BASIC ANTENNA FORMS – ONLY 2 **DIPOLE FORM VERTICAL FORM** UNDERSTANDING SHORT ANTENNAS **PROPERTIES BEHAVIOR** PERFORMANCE


• WHAT TYPE MIGHT BE BEST DEPENDS ON CIRCUMSTANCES

ANTENNA CIRCUIT

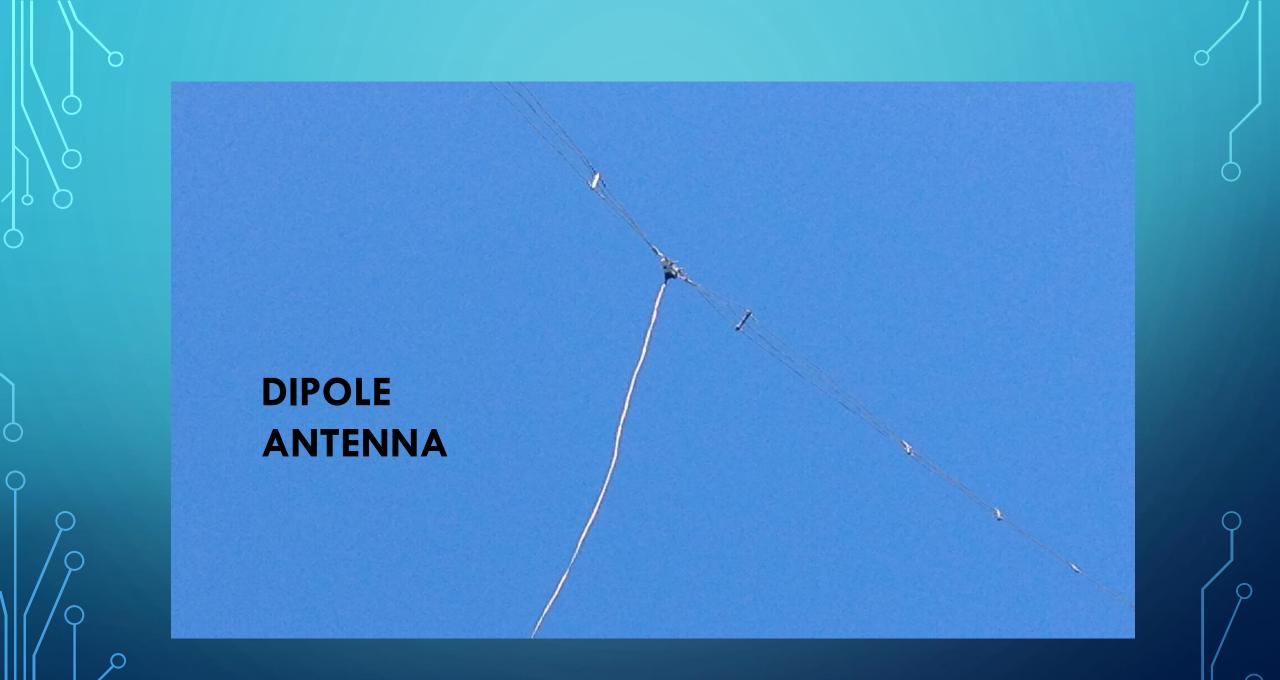
- Generator the transmitter
- Feedline two conductors
- Antenna two wires
- Antenna as R = radiation resistance at resonance
- Complete the circuit current must flow entirely around the loop

Antenna Circuit

Generator – the transmitter Feedline – two conductors Antenna – two wires Antenna as R= radiation resistance at resonance

Complete the circuit – current must flow entirely around the loop

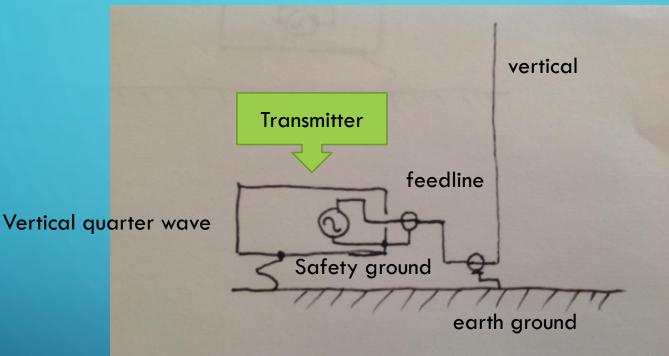
DIPOLE ANTENNA


NO EARTH CONNECTION REQUIRED FOR ANTENNA – GOOD ANTENNA RADIATES INDEPENDENT OF GROUND RIG GROUNDED BY GREEN WIRE IN POWER CORD – SAFETY THIS GROUND IS NOT PART OF THE ANTENNA SYSTEM.

Dipole Antenna

- No earth connection required for antenna good!
- Antenna radiates independent of ground

- Rig grounded by green wire in power cord SAFETY
- This ground is not part of the antenna system



- Antenna operates "against" ground
- Ground circuit is required real earth or artificial
- Ground is the other half of the antenna circuit
- Ground consists of a conductive surface to mirror the top half of a vertical quarter wave antenna
- Rig grounded by green wire in power cord SAFETY
- Safety ground could become part of antenna system
- Not desirable

Vertical Antenna

- Antenna operates "against" ground
- Ground circuit is required real earth or artificial
- Ground is the other half of the antenna circuit
- Ground consists of a conductive surface to mirror the top half of the antenna

- Rig grounded by GREEN wire in power cord SAFETY
- Safety ground could become part of antenna system
- Not desirable

STANDARD ANTENNA

to which most other antennas are compared

- Resonant Half Wave dipole
- At resonance, feed point ~ 50 ohms (radiation resistance)
 Good match to 50 ohm coax
 Low VSWR
 - Maximum power transfer from rig to antenna
- Short antenna performance measured against this Gain, impedance, bandwidth

SHORT ANTENNA PROPERTIES

- Antenna gain is reduced due to shortness
- Feed point impedance changes
- Antenna no longer resonant at desired frequency

radiation resistance drops significantly

capacitive reactance appears at the feed point

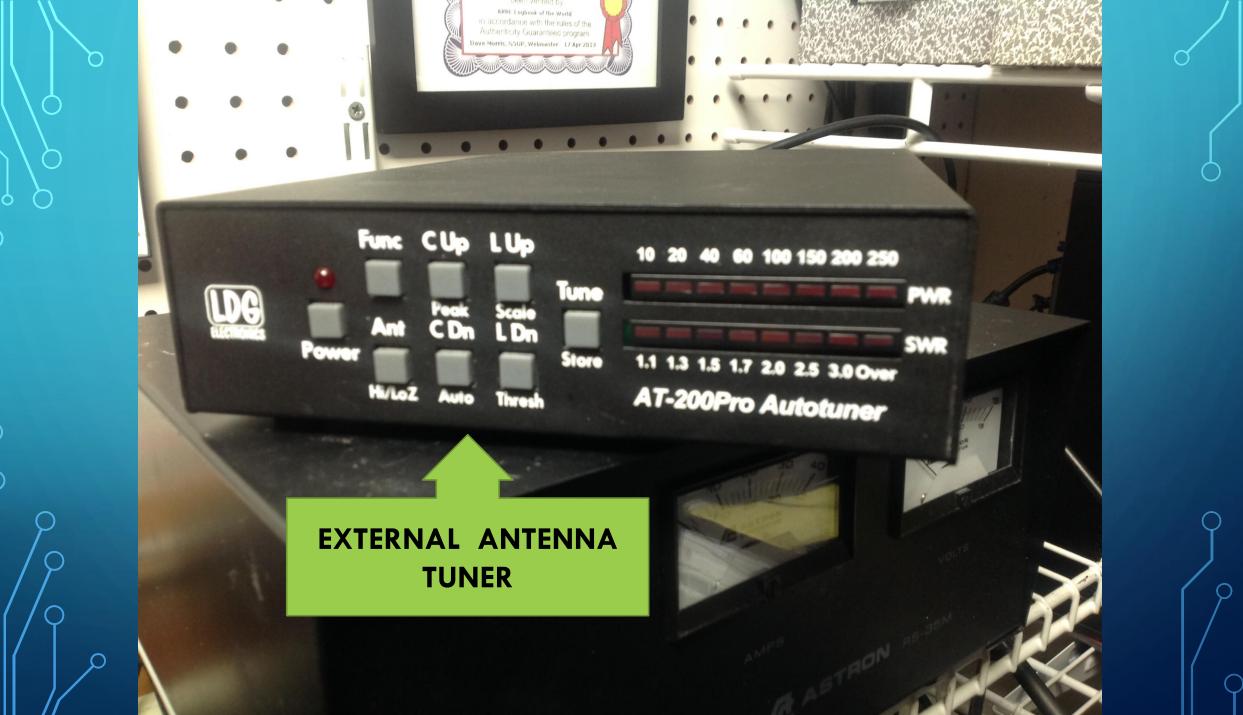
feedline matching becomes poor and high VSWR results

• Efficiency drops

ohmic losses become a significant part of the feed point Z

- Dipoles
- Loops
- Verticals
- Long (actually short) wires
- Other?

RESTORE RESONANCE


- Short antenna "looks" capacitive
- Restore feed point impedance to look resistive
- Add an inductor somewhere "in" the antenna nulls out the capacitance – creates resonant circuit used with both dipoles & verticals
- Add a capacitor to the end of the antenna make antenna look longer (electrically) than it is used most often with verticals

USE AN EXTERNAL TUNER

• Antenna is not brought back to resonance

no inductive or capacitive loading added

- Tuner matches complex antenna feed point impedance to 50 ohm output of transmitter
- Useful for multi-band operation
- Tuning limitations may be evident if tuner cannot match the antenna / feed line impedance
- Antenna is not brought back to resonance
- Rig tuners not well suited to off-resonant antennas

LOADING COILS

- Loading Coils are inserted in series with antenna
 - "makes up for shortness"
- Cancels the Capacitive component
- Resonates the antenna
- Coil placement

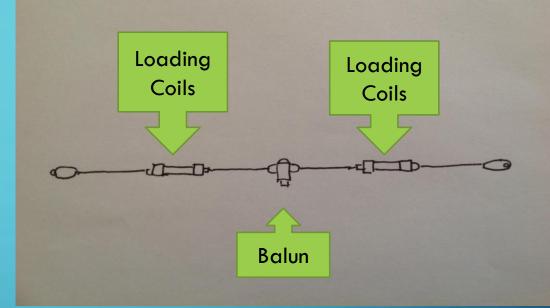
Dipoles – one in each leg

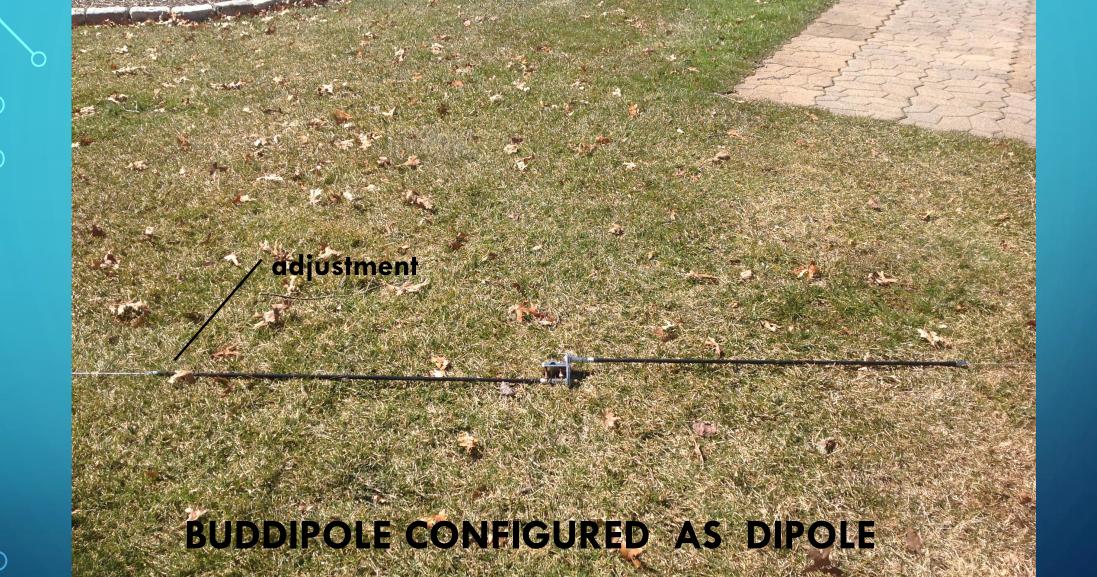
Verticals – one towards or at the bottom

COIL LOADED DIPOLE

- Balanced system
- Single band
- No ground issues
- Reduce lengths

80m dipole from 132 ft to 69 ft
40m dipole from 66 ft to 38 ft
most likely an outdoor application


• Radio tuner ought to be OK



Coil Loaded Dipole

Loading Coils (2) – "Shortner" Balun

- Balanced system
- Single band
- No ground issues
- Reduce lengths
 - 80m dipole from 132ft to 69 ft
 - 40 dipole from 66 ft to 38 ft
 - most likely an outdoor application
- Radio tuner ought to be OK

WIRE ANTENNAS

• Shortened, loaded balanced multi-band dipoles

no ground issues

multi band

outdoor

• Alpha Delta

DX-EE 40 ft / 40 thru 10

Radio tuner probably OK

• B & W

BWD series 20 ft / 20 thru 10m

Radio tuner OK

• Radio Works

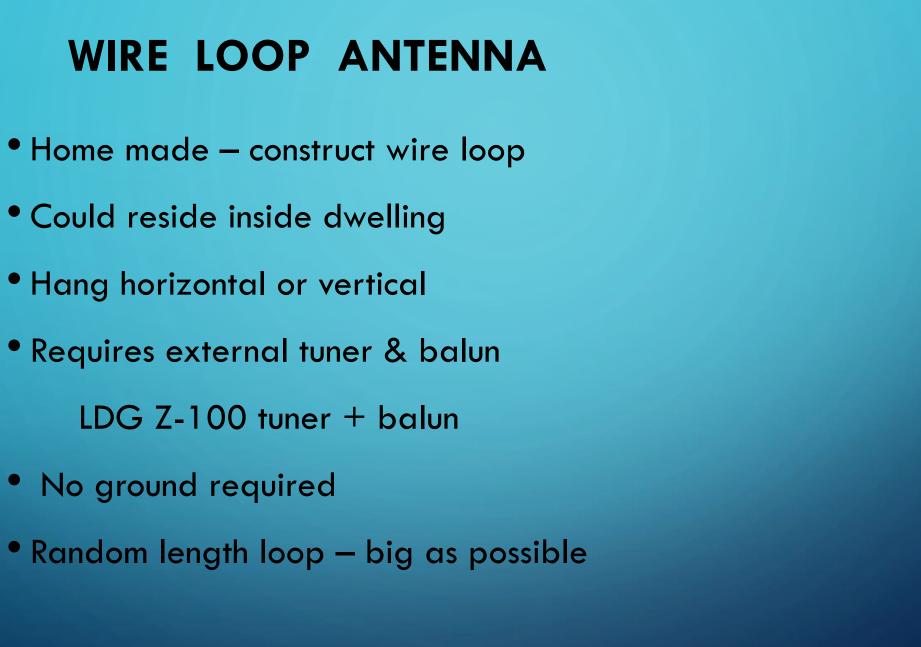
G5RV all band

External tuner needed

COMPACT DIPOLES

• Ventenna (antenna that looks like a roof vent stack) 20 to 10m 80 & 40m options length unknown • Buddipole 40 to 2m coil loaded collapsible

16 feet extended


COMPACT VERTICAL

• Ventenna 40 to 10m 80m option length 10'6"

LOOP ANTENNA

- Small and very suitable for apartments
- 36 inch diameter
- No ground system required
- 20 thru 10m or 40 thru 15m
- Good performance reviews on eHam
- Low noise advantage
- Self tuning no external tuner needed
- Inside or outside dwelling

Loop Antenna

- Hang horizontal or vertical
- Requires external tuner & balun LDG Z-100 tuner + balun
- No ground required
- Random length loop big as possible

COMPACT YAGI'S

- Hybrid Quad
 - 20 thru 6m
 - 11 ft elements / < 5 ft boom
- Mini Beam
 - 10 thru 40m
 - Gain rated at \sim 6.0 dbi
 - Boom length (m) ~ 3.82
 - Radius (m) ~ 5.0

VERTICAL ANTENNAS

- Verticals are unbalanced antennas
- Require a ground plane or counterpoise
- Copper plumbing and Safety ground wiring NOT a good choice for RF ground / counterpoise
- Mounting possible off balconies, rooftops or at ground level
- Inside a dwelling, maybe not so practical

RADIAL SYSTEM

MULTI-WIRE

• A system of wires at base of vertical

minimum 2 per band if using multi band vertical

single band, try for 8 as long as possible, up to $\frac{1}{4}$ wave

- Lay radials out symmetrically as possible
- Bend ends to fit, no bends at base
- Lay radials on surfaces
 - roof, hold in place with bricks

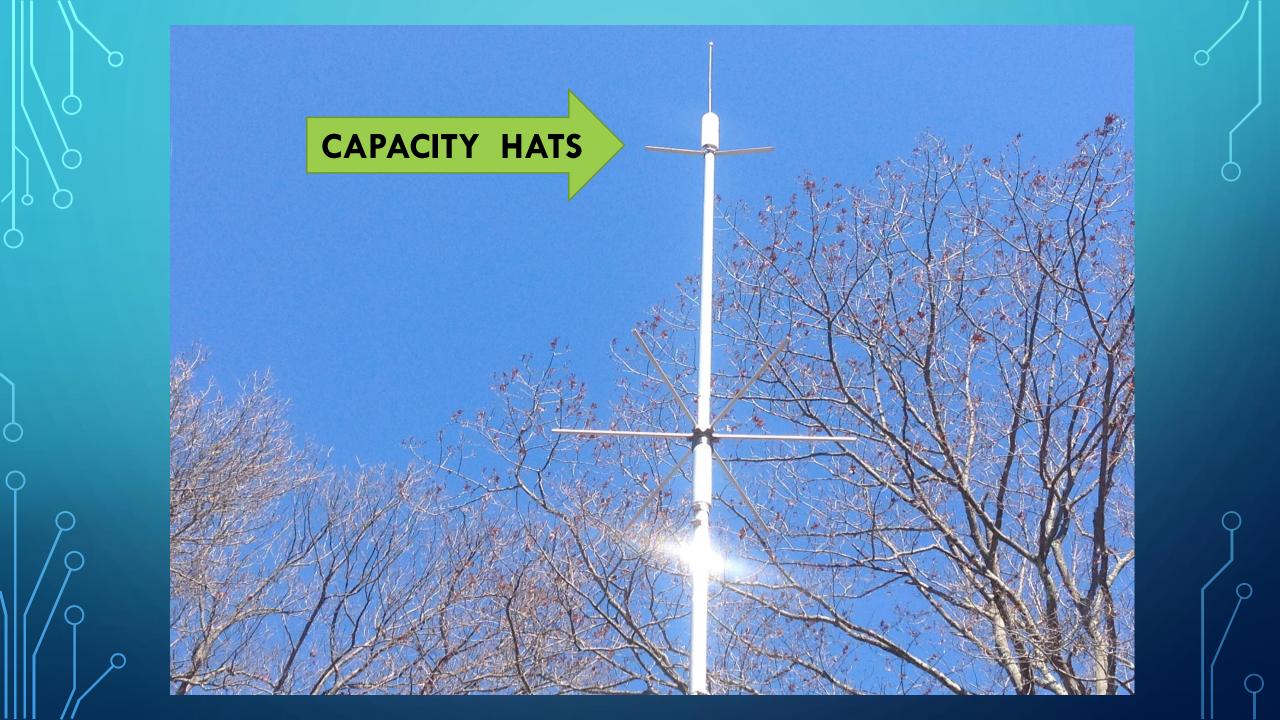
lawns - trench and bury (staples available)

COUNTERPOISE

SINGLE WIRE

- A conductor(s) used as a substitute for earth or ground in an antenna system
- Usually just one or two wires
- Counterpoise will have RF on it and will radiate
- Undefined operation if using building copper pipe or safety ground wiring as counterpoise
- Artificial Ground loads a short counterpoise

COIL LOADED VERTICAL


- Coil at base = feed point
- Intended for mobile applications
- Uses car body as counterpoise
- Use as base with a radial or counterpoise system

LOADED VERTICAL

CAPACITY "HATS"

- Capacity "Hat" placed at end (top) of antenna
- Resonates the antenna
- Removes the Capacitive component
- Placement most effective at end of antenna

- Coax feedline to vertical use a current choke / balun
- Keep RF from flowing on coax & entering shack
- Isolates rig / antenna from safety ground
- Coax coil choke
 - home made coil of coax
- Snap On Chokes (available commercially)
- Ferrite Beads (available commercially)

BALUN AND LINE CHOKE

SOME VERTICAL ANTENNAS

• Trap

Good for ground mount or flat roof to 30 ft high Requires ground system

Multi-band 80 thru 10m

MFJ

Hygain

• Screwdriver

Motorized, tuneable

Multiband, fully resonant 80 - 10m

Extends to \sim 9 ft, some shorter

Requires ground system

High Sierra

Tarheel

BUDDIPOLE COULD BE CONFIGURED AS A VERTICAL

BALCONY MOUNTED

- Short verticals mounted on railings
 - Metal railings as counterpoise

Wooden railings, run counterpoise wires on wood or on floor; cover with mat

• Longer verticals

Painter pole, retractable, telescoping "mast" Mobile Whips

LONG WIRE ANTENNAS

• Random lengths of wire – long as possible

easy to build – string outdoors, #22 insulated black

need to support two ends

- Typically non resonant
- Usually end fed high Z point
- Must have a tuner (other than rig)
- Tuner must have a "ground" or counterpoise connection

STEALTH

- ARRL Book
- Flagpole Verticals ground mounted
- Wires lying on roof tops
 - Black insulation, small diameter, #22
- Wires on Gable ends
 - No good under AL eaves with AL gutters
- Wires on Fences Loops
- Attics for yagi's
- VHF/UHF on short mast looks like TV antennas
- Vent pipe VHF/UHF verticals, roof mounted (Ventenna)

SUBSURFACE DIPOLE

• If on ground floor and able to trench the yard

Buried ~ 8 inches

Reported less gain

 \sim 3 S units less than a comparable, low dipole

Totally "experimental"

SAFETY

- Exposure to RF fields
 - **Biological heating**
 - Safety Code American Standard
 - Exposure Factor closeness to antenna
 - Exposure Factor transmitter power levels
- Antenna Voltages
 - RF burns from ends of antennas
 - "Hot" grounds at unknown locations if safety ground or plumbing used as counterpoise

SUMMARY

- Consider balanced antenna systems first
- Verticals work will work but require radials or counterpoise
- Long wires will work but require counterpoise
- Try and get the antenna outside somewhere
- Do not create a "special" station RF ground the radial or counterpoise is your RF ground
- Keep antenna away from metallic objects
 - Aluminum window frames
 - Service entrance
- If moving, choose antenna friendly site